Basic and generic research
Basic and generic research
Research into technology that is clearly applicable on the site is not all that is necessary for the decommissioning effort at Fukushima Daiichi NPS, it is also necessary to gather knowledge widely from around Japan and the rest of the world, with a broad perspective to include development of strategic component technologies from a medium and long-term perspective and tests and verification of technologies that are not certainly achievable.
From this perspective, primarily university R&D institutes play a major role in developing basic and generic technologies, such as advanced R&D that contributes to accelerating decommissioning, or adding diverse possibilities for substitutes for existing decommissioning technology, and providing scientific knowledge.
Meanwhile, researchers must conduct basic and generic research based on their interests, in anticipation of the decommissioning of Fukushima Daiichi NPS. That kind of quality and volume of research deepens decommissioning technology, and is expected to support the practical use of applied research.
For that purpose, the Japan Atomic Energy Agency (JAEA) and universities jointly operate the promotional cooperative group for basic and generic research, “Platform of Basic Research for Decommissioning”. The Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), the plant operator TEPCO, the International Research Institute for Nuclear Decommissioning (IRID), which conducts applied research, and others are cooperating and sharing decommissioning site needs, and have obtained the broad participation of many researchers and research institutions from inside and outside of Japan to advance basic and generic research.
Essential R&D themes based on needs and its strategic promotion
In the meetings of Decommissioning R&D Partnership Council (refer to
“the whole picture of efforts”), at a viewpoint letting needs in the sight
of 1F and seeds of research institutes including university make matching,
it was pointed out that it is important to make the needs clear and to
facilitate prospective seeds to develop until applied/practical levels.
For this purpose, the taskforce set up under Decommissioning R&D Partnership
Council specified following 6 essential R&D themes that should be preferentially
and strategically targeted.
Now, 6 sub-sessions were established in the Platform of Basic Research
for Decommissioning, by the selection of the 6 essential R&D themes.
And discussions to develop an R&D strategy that stipulates the approach
to the selected essential R&D themes are underway.
- Elucidation of secular change process, etc. of fuel debris
The fuel debris retrieval is scheduled for 2021 onward, 10 years after the fuel debris generation. And since it is anticipated that the retrieval will require a long period of time, the fuel debris will remain inside the reactors over 10 years. Also the retrieved debris must be stored safely. To consider the best possible methods of retrieve/transportation/storage of fuel debris, it is necessary to predict the secular change process of fuel debris.
- Elucidation of corrosion mechanisms under special environment
It is required to collect data on corrosion under a variety of circumstances with consideration of the special environment of 1F decommissioning such as high radiation levels or unsteady routes of cooling water, in order to prepare for potential corrosion during decommissioning.
- Radiation measurement technologies adopting innovative approaches
The radiation levels are still extremely high inside the 1F reactors/buildings due to the accident and the existing measurement devices do not meet the capability/functional requirements to provide accurate figures. It is vital to develop an innovational device adopting brand-new ideas/principles based on 1F needs.
- Elucidation of behavior of radioactive/scattering particulates generated during decommissioning (incl. alpha dust measures)
As cutting of the fuel debris at a high temperature by machine or laser may generate a large amount of alpha dust, it requires safety measures and dust containment control. It is necessary to understand physical/chemical properties of alpha dust, to predict the amount of dust to be produced for each method, and to consider how to seal the dust according to the results, in order to ensure safety during retrieval of fuel debris.
- 1Fundamental elucidation of mechanisms of contamination by radioactive material
For reduction of dose rate inside buildings, it is important to implement effective decontamination based on the mechanism of the contamination to radiation sources, and also not to put out unnecessary wastes as possible.
- Environmental fate studies of radioactive materials generated during decommissioning
It is essential to clarify the behavior of radioactive materials such as absorption, dispersion, moving along with groundwater flow in shallow underground, in order to study on environmental fate of radioactive materials.
Related information
- Ministry of Education, Culture, Sports, Science and Technology (MEXT) <The Center of World Intelligence Project for Nuclear S&T and Human Resource Development (Nuclear Safety Research Association (NSRA))>
- Japan Atomic Energy Agency, Collaborative Laboratories for Advanced Decommissioning Science (JAEA/CLADS)
<Links to base universities>
- University of Tokyo <Comprehensive human resource development for decommissioning based on remote operations technology and nuclide analysis technology>
- Tokyo Institute of Technology <Advancements in skilled human resource development for and basic research on decommissioning engineering>
- Tohoku University <Basic research into reliability maintenance of PCV and buildings, etc., and waste processing and disposal, and core human resource development program for decommissioning>
- University of Fukui <Fukushima Daiichi NPS fuel debris analysis, research on decommissioning technology, and human resource development>
- National Institute of Technology, Fukushima College <Creative human resources development program through fundamental research on decommissioning – Interdisciplinary challenge from Fukushima utilizing a network of technical colleges>Creative human resources development program through fundamental research on decommissioning – Interdisciplinary challenge from Fukushima utilizing a network of technical colleges
- Fukushima University <Fostering analytical engineers through multi-phase research education, and R&D for practical application of immediate measurement methods for difficult-to-analyze nuclides to accelerate support for decommissioning>
<Links to related academic societies >
Links to the academic societies that were listed in the special article of the March 2015 journal of the Atomic Energy Society of Japan, “Atoms”, “Questions being asked now, 4 years after the nuclear accident, ‘integrating knowledge’, the efforts of academic societies in response to the Fukushima NPS accidents”
- Atomic Energy Society of Japan
- Science Council of Japan
- The Oceanographic Society of Japan
- The Institute of Electrical Engineers of Japan
- The Physical Society of Japan
- Architectural Institute of Japan
- The Seismological Society of Japan
- Japan Health Physics Society
- Japan Society of Civil Engineers
- The Geological Society of Japan
- The Society of Instrument and Control Engineers
- The Meteorological Society of Japan
- Japan Society for Atmospheric Environment (Only The Japanese Page)
- The Sociology of Science Society of Japan (Only The Japanese Page)
- The Japanese Geotechnical Society
- Japan Society of Maintenology
- The Volcanological Society of Japan
- The Japan Institute of Energy
- The Society of Chemical Engineers, Japan
- Japan Society of Engineering Geology
- Japan Concrete Institute
- The Japan Society for Analytical Chemistry
- The Japanese Society of Fisheries Science
- The Institution of Professional Engineers, Japan, Atomic Energy & Radiation Section (Only The Japanese Page)
- The Physics Education Society of Japan (Only The Japanese Page)
- Japan Association on the Environmental Studies (Only The Japanese Page)
- The Society for Risk Analysis Japan
- The Japan Sociological Society
- Japan Society for Bioscience, Biotechnology, and Agrochemistry
- The Japanese Society for Quality Control
- The Japan Society for Aeronautical and Space Sciences
- Society of Sea Water Science, Japan (Only The Japanese Page)
- Laser Society of Japan (Only The Japanese Page)
- Japan Society of Ion Exchange
- The Robotics Society of Japan
- The Institute of Electronics, Information and Communication Engineers
- Japan Association for Social Policy Studies
- The Japanese Psychological Association
- Association for the Study of Failure
- The Japanese Society of Insurance Science
- The Japan Society for Archival Science
In order to contribute to Fukushima reconstruction and reactor decommissioning,
academic network to exchange information and to cooperate mutually was
established in 2016.
- Academic Network contributing to Fukushima Reconstruction and Reactor Decommissioning (ANFURD) (Only The Japanese Page)