Fig. 1-1 Temperature history of the Unit 1

Fig. 1-2 Dose rate of the Unit 1

Fig. 1-3 Amount of water injection into the Unit 1
Fig. 1-4 135Xe concentration in the Unit 1

135Xe would be generated by spontaneous fission of 242Cm, 244Cm, etc.

Fig. 1-5 H_2 concentration in the PCV of the Unit 1

H_2 purge from the S/C Oct/2011

Fig. 1-6 Amount of N_2 gas injection into the Unit 1

- Start of N_2 flow into RPV
- N_2 flow into PCV
- Ventilation
- N_2 flow into RPV from JP instrument rack line

N_2 injection test from OR line and JP instrument line 19Jul2017

Stop of N_2 injection into the PCV 3Jul2013

N_2 injection test from O_2 sampling line 12Nov2013 to 26Nov
Fig. 1·7 137Cs and 134Cs concentration in PCV of the Unit 1

Fig. 1·8 85Kr concentration in PCV of the Unit 1
Fig. 2-1 Temperature history of the Unit 2

Fig. 2-2 Dose rate of the Unit 2

Fig. 2-3 Amount of water injection into the Unit 2
Fig. 2.4 135Xe concentration in the Unit 2

Fig. 2.5 H₂ concentration in the PCV of the Unit 2

Fig. 2.6 Amount of N₂ gas injection into the Unit 2
Fig. 2-7 137Cs and 134Cs concentration in the PCV of the Unit 2

Fig. 3-1 Temperature history of the Unit 3

Fig. 3-2 Dose rate of the Unit 3
Fig. 3-3: Amount of water injection into the Unit 3

Fig. 3-4: 135Xe concentration in the Unit 3

Fig. 3-5: H_2 concentration in the PCV of the Unit 3
Fig. 3-6 Amount of N₂ gas injection into the Unit 3

Fig. 3-7 ¹³⁷Cs and ¹³⁴Cs concentration in PCV of the Unit 3

Fig. 4-1 PCV pressure
Fig. 4-2 Amount of water injection

Fig. 4-3 Water level in T/B

Fig. 4-4 Temperature increase rate in spent fuel pool
Fig. 4-5 Cl⁻ concentration in accumulated water in PCVs and turbine building

Fig. 4-6 137Cs concentration in accumulated water in PCVs, torus rooms, turbine buildings, process main building and high temperature incinerator building

Fig. 4-7 137Cs concentration in accumulated water of each building